基于神经网络房地产价格指数的预测研究(续)

基于神经网络房地产价格指数的预测研究(续)

97 4.7
26 2021-04-27
pdf | 2.2MB | 13页
正文 简介
研究表明,房地产价格指数常表现为非线性,要对它进行预测就必须利用一种能模拟非线性的模型。从理论上讲,神经网络能够无限逼近非线性函数,所以本文便尝试采用神经网络模型作为预测的模型。本文具体运用的是基于误差反向传播算法的多层前馈网络(BP神经网络)和径向基函数(RBF)神经网络。首先利用BP神经网络对采集到的中国房地产价格指数进行训练和模拟,最后进行预测,并比较预测结果和真实值,发现误差比较大,一方面是因为选取的样本数据少,另一方面是因为BP神经网络本身具有缺陷。为了克服BP神经网络预测的缺陷,本文接着运用RBF神经网络对选取的数据进行训练和模拟,用训练好的网络来进行预测,得到的预测结果与真实值相比较,误差很小,而且RBF神经网络的运行速度要比BP神经网络快很多。经过比较可以得出RBF神经网络用于经济预测可以达到很好的效果。
*温馨提示:该数据为用户自主上传分享,如有侵权请举报或联系客服:400-823-1298处理。
312414u***
312414u***
服务: 4.4
数据量: 5
人气: 86
擅长:装饰 市政 电气

您可能感兴趣

原价: 100 积分
立即购买

老客限时专享

优惠券专享

恭喜您获得500元优惠券