基于云模型的城市轨道交通短时客流预测
城市轨道交通线路短时客流具有不确定性特征。分析了短时客流的准周期性,用云概念表示短时客流的特征,构建历史时间云、历史客流云、当前客流趋势云以及客流预测云,并建立时间云与客流云的关联规则,将时间云作为规则前件,客流预测云作为规则后件构建单条件多规则不确定性预测云模型。以南京地铁2号线15 min间隔的进站客流预测为例,将云模型与ARIMA模型的预测结果进行对比分析,证明云模型应用于短时客流预测的有效性,从而为城市轨道交通线路短时客流预测提供了一种新途径。
开通会员