基于滑动平均法的轨道交通短时客流实时预测
提出了一种基于滑动平均方法(MA)的城市轨道交通客流预测算法,首先确定用于滑动平均的滑动参数,然后对历史数据求滑动平均值得到各个时间段的预测客流数据,并采用实时客流数据对预测结果进行修正,得到预测客流时间序列。试验结果表明,采用滑动平均方法不仅预测精度要高于支持向量机(SVM)、反向传播神经网络(BPNN)、小波神经网络(WNN)和小波组合支持向量机(WS)这4种预测方法,而且滑动平均方法的计算速度要明显优于以上4种方法,可用于复杂非平稳客流时间序列的短时预测。
开通会员