针对超磁致伸缩微位移驱动器(GMA)的非线性迟滞特性,通过密度函数法和F函数法建立GMA的两种Preisach数值模型,仿真和试验表明F函数法对滞回曲线的预测效果优于密度函数法。为将Preisach数值模型应用于GMA的实际控制系统,提出一种Preisach实时数字补偿算法,建立基于Preisach前馈补偿的PID控制模型,分别采用开环、普通PID和带Preisach前馈补偿的PID三种控制器对GMA的位置跟踪和轨迹跟踪两种控制问题进行试验研究,结果表明带Preisach前馈补偿的PID控制器可显著提高GMA的响应速度和跟踪精度,使GMA在100μm量程内的位置跟踪和轨迹跟踪误差分别达到3μm、2μm。