针对公共建筑基线负荷难以有效预测的问题,提出了一种基于模糊C-均值聚类预处理的人工神经网络预测方法。采用聚类算法,将大量的复杂历史数据集划分成多个群体的混合,每个群体对应单独的预测模型进行预测。该方法减少了培训数据,克服了标准方法数据量大和处理速度慢的缺点。将预测结果与标准的人工神经网络方法相比较,得到了较高的预测精度,能有效预测公共建筑基线负荷。
开通会员