为改进以往神经网络对建筑能耗预测的不足,提出应用遗传算法结合Levenberg-Marquardt算法(GALM)改进神经网络对建筑能耗进行预测。首先,利用遗传算法优化神经网络的权值和阈值;其次,利用Levenberg-Marquardt算法优化神经网络训练,针对影响建筑能耗的主要因素建立GALM神经网络的建筑能耗预测模型。通过建立建筑能耗监测平台采集某公共建筑1个月的能耗数据,对该模型进行训练和测试。实验结果表明,该模型可以准确且高效地对建筑能耗进行短期预测。
开通会员