为提高基于视频图像的公路隧道火灾火焰识别率,在对火焰动态特征研究成果之上,利用BP神经网络融合火焰静态特征,对公路隧道视频火焰进行综合识别.火焰动态特征选取作者研究的火焰边缘运动量(AM FE)和火焰区域跳动特征,火焰静态特征选取前人研究的尖角数目、火焰颜色特征和圆形度.将此5种火焰特征作为BP神经网络的输入,达到融合火焰多特征信息并实现火焰综合识别的目的.实验结果表明,火焰识别率稳定在86.2%~96.5%之间,验证了该方法的可靠性.
开通会员