将粗糙粗集理论和神经网络原理结合起来,建立了基于粗集-神经网络的建筑物震害预测模型。首先运用粗糙集理论,根据原始样本建立决策表进行属性离散化、属性重要性排序、属性约简和分类规则的提取;然后将所提取的关键成分作为神经网络的输入训练模型。实例研究表明,基于粗集-神经网络的多层砖房震害预测结果与实际震害基本吻合。该模型简化了神经网络结构,提高了训练速度和分类精度,还能对各因素对房屋震害的影响度进行分析。
开通会员