基于随机Dropout和PSO-BP的建筑能耗预测研究

99 4.7
38 2021-04-27
pdf | 1.7MB | 2页
正文 简介
针对传统BP神经网络存在的收敛速度慢和极易陷入局部极小值导致网络\"震荡\"的缺点,影响建筑能耗预测准确性的问题,本文提出一种基于随机Dropout和PSO-BP的建筑能耗预测方法.该方法利用粒子群算法(PSO)对BP神经网络的权值和阈值进行优化,再利用随机Dropout算法改进PSO-BP网络的隐层单元,获得较快的运算速度.案例仿真结果表明:与传统BP神经网络和PSO-BP神经网络预测比较,经过PSO-BP和随机Dropout改善后的网络预测速度更快、预测精度更高,其预测结果可为建筑节能管理运行提供参考.
*温馨提示:该数据为用户自主上传分享,如有侵权请举报或联系客服:400-823-1298处理。

您可能感兴趣

原价: 100 积分
立即购买

老客限时专享

优惠券专享

恭喜您获得500元优惠券