多目标蚁群算法及其在固液混合火箭发动机系统优化设计中的应用

多目标蚁群算法及其在固液混合火箭发动机系统优化设计中的应用

67 4.4
28 2021-04-27
pdf | 870KB | 5页
正文 简介
为了提高求解多目标优化问题的Pareto解集的效率,建立了适用于多维、多目标优化问题的多目标蚁群算法(Multi-objective Ant Colony Algorithm,简称MACA)。该算法首先修正了蚁群算法的信息素更新机制和转移概率,然后改进了蚂蚁的行进策略,即提出了依概率选择搜索策略。最后,应用该算法对某型号固液混合火箭发动机系统进行了优化设计。计算结果表明,多目标蚁群算法获得的Pareto解集分布均匀、散布范围广,可以有效解决多目标优化问题,能为决策者进行目标权衡提供充分依据。
*温馨提示:该数据为用户自主上传分享,如有侵权请举报或联系客服:400-823-1298处理。

您可能感兴趣

原价: 100 积分
立即购买

老客限时专享

优惠券专享

恭喜您获得500元优惠券