一种聚类加权支持向量机算法及其在软测量中的应用
针对支持向量机应用于软测量建模时,工业过程数据中特异点影响建模精度的问题,提出聚类加权支持向量机方法。该方法首先对建模数据进行聚类分析,根据聚类结果,对各类数据的惩罚系数进行相应的加权,改变权值大小既能减小特异点对模型的影响程度,又能将其包含的生产过程信息引入到软测量模型中。聚丙烯熔融指数软测量的实例研究表明,通过对建模数据进行聚类分析和加权处理,聚类加权支持向量机比标准支持向量机建模更准确。
开通会员