基于反面选择算法的气阀故障诊断
研究了一种结合克隆和变异原理的反面选择算法,利用傅立叶变换把时域振动信号转换为频域信号,提取出某一故障的特征频段,基于生物免疫系统的反面选择机理,并利用反面选择算法训练和产生适合于这一故障的检测器集。通过对三种气阀故障的检测,实验结果很好地说明了本算法的有效性,为研究新的故障诊断方法提供了可能。
开通会员