针对电梯群控调度过程中交通流不确定的问题,建立了鲁棒优化模型,利用遗传算法对所建模型进行求解.对于不确定线性优化问题,研究了不确定集的选择以及模型鲁棒对等式转化方法.仿真实验中,利用电梯群控虚拟仿真环境对鲁棒优化调度算法在不同交通流下进行了验证.以300人/15 min的混合交通流模式为例,鲁棒优化算法的平均候梯时间比静态分区算法降低12.77 s;平均乘梯时间比最小等待时间算法降低9.7 s;电梯启停次数比静态分区算法少8次.实验结果表明,鲁棒优化调度算法对不同交通模式具有更好的适应性,可以减小交通流不确定性的影响,提高电梯群控调度性能.