针对空调系统中的不同故障,分析了空调箱的故障特性,并讨论了不同故障对空调系统能耗及热舒适性的影响.仿真试验结果表明,送风温度的测量故障会导致系统能耗的增加.根据故障特性,提出了一种基于神经网络的数据处理方法,用以检测和诊断空调箱中的传感器故障.该方法首先选取历史数据对神经网络进行训练,实现对系统运行状态的识别和预测.然后,通过比较测量值与预测值,计算出相对误差,实现对故障的诊断.最后,利用基于TRNSYS的仿真器,对神经网络的故障诊断策略进行了验证.结果表明,神经网络可以有效诊断空调系统中的温度、流量和压力传感器故障.