基于PCA与RBF的建筑能耗预测建模

基于PCA与RBF的建筑能耗预测建模

98 4.5
35 2021-08-06
pdf | 693KB | 5页
正文 简介
由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低.为了提高建筑能耗预测精度,提出一种将主成分分析(principal component analysis,PCA)和径向基函数(radial basic function,RBF)神经网络相结合的建筑能耗预测方法(PCA-RBF).利用PCA消除建筑能耗高维变量数据的相关性,并按累积贡献率提取主成分,将主成分作为RBF神经网络的输入进行训练学习.通过PCA避免了模型过多的输入导致的训练耗时长及预测精度较低的不足.通过将PCA-RBF模型方法应用于某办公建筑能耗的预测中,并与RBF神经网络及BP神经网络模型相比,实验结果表明PCARBF模型方法能有效提高建筑能耗预测精度.
*温馨提示:该数据为用户自主上传分享,如有侵权请举报或联系客服:400-823-1298处理。
zl880***
zl880***
服务: -
数据量: 2
人气: -
擅长:土建 装饰 园林 电气

您可能感兴趣

原价: 100 积分
立即购买

老客限时专享

优惠券专享

恭喜您获得500元优惠券