基于混沌理论和Legendre正交基神经网络的短期负荷预测
考虑到短期负荷所具有的混沌特性和神经网络的非线性映射能力,提出了一种基于混沌理论的Legendre神经网络预测方法。该方法运用混沌理论对短期负荷数据进行向空间重构,并以欧式距离选取最佳训练样本,而后采用以Legendre正交多项式为隐含层神经元激励函数的三层神经网络进行训练,并运用训练好的网络进行预测。训练网络时,为了确定网络的最佳拓扑结构,文中引入了衍生算法来确定隐含层神经元的最佳个数。实例分析表明了该方法的可行性,且能得到较高的预测精度和良好的预测效果。
开通会员