一种基于快速增量SVM的入侵检测方法
针对基于支持向量机(SVM)的入侵检测方法检测率低、检测速度慢的问题,提出一种基于快速增量SVM的入侵检测方法B-ISVM。该方法在确定邻界区后筛选其中的样本进行训练,完成分类超平面的初步构造,利用筛选因子提取支持向量,再进行基于KKT条件的增量学习,实现增量SVM分类器的构造。实验结果表明,该方法可以提高入侵检测率和检测速度,拥有更好的分类性能。
开通会员