针对在线网络信息内容安全事件的分类问题,利用网络用户通信信息中含有的时间、关系和内容特征均可基于文本描述的特点,引入LDA模型,提出了一种实时多维信息联合(RMIA-LDA)的在线信息内容安全事件分类模型及算法。以网络通信中的时间特征为轴,对由此划分出的各个时间片段中的通信关系、通信内容特征采用LDA模型进行建模分类,对分类结果的相似性进行度量后,再与增量更新数据部分的分类结果归纳合并,从而得到当前实时在线数据中的事件分类。仿真实验结果表明,该模型和算法可以有效实现网络中信息内容安全事件的在线分类,较现有算法具有优越的性能。