介绍了BP神经网络算法的原理以及对其采用非线性阻尼最小二乘法Levenberg-Marquardt进行优化的方法。采用MATLAB的神经网络工具箱建立了一个单隐层的BP神经网络模型和预测流程,采用24个输入人工神经网络模型预测每天的整点负荷,并且讨论了如何进一步通过改变网络参数以提高负荷预测精度。实验仿真结果表明,此方法预测短期电力负荷,可以得到令人满意的训练速度及预测精度。
开通会员